On classical solutions of the two-phase steady-state Stefan problem in strips
نویسندگان
چکیده
منابع مشابه
On a steady state two - phase Stefan
We consider a stationary two-phase Stefan problem with convection. The problem is governed by a coupled system involving a nonlinear Darcy law and the energy balance equation with second member in L 1. We prove existence of at least one weak solution of the problem, using the penalty method and the Schauder xed point principle.
متن کاملNonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملClassical two - phase Stefan problem for spheres
The classical Stefan problem for freezing (or melting) a sphere is usually treated by assuming that the sphere is initially at the fusion temperature, so that heat flows in one phase only. Even in this idealized case there is no (known) exact solution, and the only way to obtain meaningful results is through numerical or approximate means. In this study, the full two-phase problem is considered...
متن کاملViscosity Solutions for the two-phase Stefan Problem
We introduce a notion of viscosity solutions for the two-phase Stefan problem, which incorporates possible existence of a mushy region generated by the initial data. We show that a comparison principle holds between viscosity solutions, and investigate the coincidence of the viscosity solutions and the weak solutions defined via integration by parts. In particular, in the absence of initial mus...
متن کاملnonlinear two-phase stefan problem
in this paper we consider a nonlinear two-phase stefan problem in one-dimensional space. the problem is mapped into a nonlinear volterra integral equation for the free boundary.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications
سال: 1992
ISSN: 0362-546X
DOI: 10.1016/0362-546x(92)90139-6